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Duality Relations for Asymmetric Exclusion Processes 
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We derive duality relations for a class of Uq[SU(2)]-symmetric stochastic pro- 
cesses, including among others the asymmetric exclusion process in one dimen- 
sion. Like the known duality relations for symmetric hopping processes, these 
relations express certain m-point correlation functions in N-particle systems 
(N~> m) in terms of sums of correlation functions of the same system but with 
only m particles. For the totally asymmetric case we obtain exact expressions for 
some boundary density correlation functions. The dynamical exponent for these 
correlators is z = 2, which is different from the dynamical exponent for bulk den- 
sity correlations, which is known to be - =  3/2. 

KEY WORDS:  Asymmetric exclusion processes; duality relations; quantum 
algebra; correlation functions: dynamical scaling. 

1. I N T R O D U C T I O N  

Duality relations play an important role in the study of stochastic models 
of interacting particles/11 The basic idea behind duality in this context is to 
relate a given stochastic process to another, dual one, in such a way that 
quantities which one may compute for one process are expressed in terms 
of quantities obtained from the dual process. In many cases it happens that 
the dual process is more tractable than the original one and calculations 
simplify considerably. An important example is the symmetric exclusion 
process describing lattice diffusion of identical particles with hard-core 
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repulsion. Here duality relates m-point equal-time density correlation func- 
tions of a system with N>~m particles (for arbitrary initial conditions) to 
sums of correlation functions of a system with only m particles. So, for 
instance, the time evolution of the average particle density at some lattice 
site k of an N-particle system is completely given by the dynamics of a one- 
particle system and can therefore be calculated exactlyJ 2~ 

Recently there has been much interest in stochastic processes which 
can be mapped to quantum lattice models or to vertex models. In this 
mapping the set of allowed configurations of the system becomes a vector 
space (where each configuration is a basis vector) and the time evolution 
of the (stochastic) variables is defined in terms of a "Hamilton" operator 
or transfer matrix acting on this space. A particularly interesting subclass 
of such systems are those where the dynamics is mapped to integrable 
quantum chains in one dimension, ~3 4~ to integrable two-dimensional vertex 
modelsJm ~4~ or to SU(N)-symmetric quantum Hamiltonians in any 
dimension, c~5"t6~ an example of which is the symmetric exclusion process 
mentioned above. Indeed, in the latter case it is possible to rederive the 
duality relations from the SU(2) symmetry of the problem alone and 
thereby obtain new duality relations for other SU(2)-symmetric systems 
such as diffusion with partial exclusion as well as relations involving 
correlation functions for different times. ~tS~ Examples of integrable models 
which can be studied using the quantum Hamiltonian formalism are the 
asymmetric exclusion process and other driven lattice gases, which in one 
dimension are related to growth modelsJ ~7~ 

In this paper we study various versions of asymmetric exclusion 
processes describing driven diffusive lattice gases with space-dependent 
hopping rates in one dimension (see below). In its simplest version this 
model is equivalent to an RSOS-type model of a growing interface. ~st'~ 
The continuum limit of this model is believed to be in the universality class 
of the KPZ equationJ 2"~ The model also gives rise to a discrete version of 
the noisy Burgers equation and is therefore of relevance for the study of 
shock fronts in one-dimensional media. ~l'21 25~ In yet another mapping the 
totally asymmetric model may be used to describe directed polymers in dis- 
ordered media. ~v'26 >~ More involved versions of asymmetric exclusion 
processes have been used as models for freeway trafficJ ~~ .~2~ 

Unfortunately there are no simple duality relations for density correla- 
tion ftmctions for this model as one has for the undriven case, i.e., sym- 
metric exclusion, and very few exact results on the dynamics of the driven 
lattice gas are known. One of these is a result by Gwa and Spohn, ~4~ who 
proved that in a half-filled system with periodic boundary conditions and 
hopping in only one direction the lowest energy gap of the time evolution 
operator vanishes with the size L of the system as L ~ 2. This was later 
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shown to be true for the lowest energy gaps at any finite particle densityJ 9~ 
Both results are consistent with the expected dynamical exponent z = 3/2 of 
the model. 

Here we study the system with reflective boundary conditions, i.e., par- 
ticles cannot enter or leave the system. We show that if the asymmetry in 
left- and right-hopping probabilities is spatially constant, the system is 
symmetric under the action of the quantum deformation U,~[SU(2)] of 
SU(2),t33 35) where the deformation parameter q parametrizes the hopping 
asymmetry. We will use this symmetry to introduce the lattice analogue of 
the Hopf-Cole transformation c36~ on the KPZ  equation. This transformation 
gives rise to duality relations generalizing those known for the symmetric 
model. These relations for the asymmetric case do not involve density 
correlators, but exponentials of integrated densities (see below). In the con- 
tinuum limit this quantity may be interpreted as the partition function of 
a polymer chain in two dimensionsJ t7) It also plays an important role in 
the study of interfaces in disordered system. 137"38) The simplest of the 
duality relations was derived previously in ref. 7. Here we derive the full set 
of relations and we show how to obtain similar relations for correlation 
functions for different times. 

In the totally asymmetric limiting case where particles hop only in one 
direction (say to the right) these operators become products of density 
operators acting on neighboring sites. Thus one obtains exact expressions 
for the probability of finding p neighboring sites occupied where the fist of 
these p sites is the leftmost site initially occupied. 

The paper is organized as follows. In Section 2 we set up the formalism 
and define the model. We briefly review some of its symmetries, in par- 
ticular its symmetry under the quantum algebra Uq[SU(2)]. In Section 3 
we derive the duality relations for the partially asymmetric case 
(q 4: 0, 1, ~ ) .  In Section 4 we treat separately the totally asymmetric model 
where particles hop only to the right, corresponding to q = 0. In Section 5 
we describe other Uq[SU(2)]-symmetric driven systems where the same 
relations hold. In Section 6 we give a brief summary of our results and 
point out some open problems. 

2. THE Uq[SU(2) ] - I N V A R I A N T  A S Y M  M E T R I C  EXCLUSION 
PROCE'SS 

Let us first define the simplest version of the models we are going to 
study. We consider a one-dimensional system where each lattice site can be 
occupied by at most one particle. The state of the system at some time t 
is given by (stochastic) occupation numbers n =  {nk}, where n k =0 ,  1 and 
k is the number of a lattice site and runs from 1 to L. The probability of 
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finding a given configuration n at time t is given by the probability dis- 
tribution F(n, t) which satisfies ~ ,  F(n, t ) =  1 (conservation of probability). 

The stochastic dynamics of the system is given by a master equation 
for the probability distribution F(n, t) which can be mapped onto a 
Schr6dinger equation ~39-4~1 with a quantum Hamiltonian H: 

0, IF(t))  = - H  IF(t)) (2.1) 

Here I F ( t ) ) =  Z .  F(n, t ) i n ) ,  where in) is a basis vector representing the 
configuration n. The Hamiltonian H acts on the 2L-dimensional vector 
space spanned by these basis vectors, which together with their transposed 
vectors (n[ form an orthonormal basis. Thus F(n, t ) = ( n [ F ( t ) ) ,  and by 
explicitly defining the Hamiltonian H the usual master equation can be 
recovered from (2.1). Conservation of probability translates into 
( s l F ( t ) )  = 1, where (s[ = )Z. (n[ is the sum over all left basis vectors. This 
implies the requirement (s] H = 0  on H. 

We shall assume that particles hop with space-dependent probability 
rates ~, from site k + 1 to site k and with rates flA- from site k to k + 1. The 
Hamiltonian is then given by 

L - I  

H = - ~  
k = l  

[~,(S~Sff+, --(1 - - n , )  n ,  + ,) + flk(s~, s i +  1 - n k (  l - - n ,  + ,))  ] 

(2.2) 

L - I  

= ~ ~lkUk,k+ I (2 .3 )  
k = l  

where 

(i ~ ~ 
q* -q~TI (2.4) 

Uk.~- + l = - -qk  q f  l 

0 0 0 *.*+l 

acts nontrivially only on nearest neighbor sites k and k + 1 and 

q , =  , p ,  = ~  (2.5) 

In our convention s~7 --- (a2 - ia~:)/2 creates a particle at site k, while s~ + = 
( a 2 + i a ~ : ) / 2  annihilates a particle at site k (a -''y are the usual Pauli 
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matrices), n, = (1 - a ~ ) / 2  is the number operator. In the basis chosen here 
one has 

s+=(00  10), s - = ( 0 1  00), n=(00 01) (2.6) 

and expressions of the form A~. for some matrix A are understood as tensor 
products 1 | --- | 1 @ A@  1 | ... | 1 with A at the kth position in the 
product and 1 being the two-by-two unit matrix. 

The logarithm of the ratio q~ of the hopping rates represents the asym- 
metry of the model and may be thought of as resulting from some driving 
force. The product /zk= ~ gives the (relative) probability that a 
hopping process occurs between sites k and k + 1 and may therefore be 
considered as a measure for the (space-dependent) mobility of the particles. 
We assume the driving foce to be independent of the position, i.e., qk = q, 
Vk. Here q =  1 corresponds to diffusion without driving force (symmetric 
diffusion), and 0 ~</~k < oo may have an arbitrary dependence on the space 
coordinate k. 

The crucial point in the derivation of the duality relations in the next 
section is the symmetry of H under the action of the quantum algebra 
Uq[ S U ( 2 )  ],133 -351 which we already exploited in ref. 7. The generators S +-'-- 
of the quantum algebra U , I [ S U ( 2 ) ]  satisfy, by definition, the following 
relations: 

[ S + , S  - ] = [2S--], t and [S--, S +- ] = + S  -+ (2.7) 

where the expression Ix ] ,  / is defined by [x]q  = ( q " -  q ")/(q - q -  ~). 
A representation in terms of Pauli matrices is given by 

L L L 

S + =  Y'. s~+(q), S - =  y'. s,s(q), S--= Z ( - n k + � 8 9  (2.8) 
k = l  k = l  k = l  

with 

k - i  L 
s~- (q) = qT~= ~,,~- l js~ 7 q -~,=~ § ~,~,- l~ 

- k  - I n  t .  s + ( q )  qX;=, is,? q 

(2.9) 

(2.10) 

and nk=s~-s~? =(1-a~ . ) /2 .  The commutation relations can be verified 
using q'"s~- = s~?, s~? q"~ = qs~? and q"~s~7 = qs k , s k q"~ = s~-. Our represen- 
tation is related to the representation given in ref. 34 by the similarity 
transformation 

V= q-x~-=, k,,, (2.1 1 ) 
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(In ref. 33 the same representa t ion  as in ref. 34 is used, but  with the replace- 
men t  q ~ ql,.2.) 

In ref. 33 it was  shown tha t  each te rm u,.~.+~ in (2.3) commutes  with 
S -+ and S-- = L/2 - ~ =  ink. Hence 

[ H , S + - ] = [ H , S : ] = O  (2.12) 

This can be derived as in ref. 33 on a purely algebraic level by expressing 
Uk.k+~ in terms of  quanti t ies related to the genera tors  of  the algebra,  but  
these c o m m u t a t i o n  relat ions are easier to check by using the explicit 
representat ion (2.6) in te rms of  Pauli  matrices:  since [u,,,+~, S ~] = 
[uk.~.+~, n , + n , + l ] = 0 ,  one has  [u, .~.+l,  s+(q)]=O for  j # k ,  k + l .  
Therefore  

S +- s~.(q)+s~.+,(q)] [u,.,+,, ] =[u, . ,+, ,  

and it remains to show [u~.~.+t, s~(q)+s~.+.(q)]=O. Using (2.10), one 
may,  e.g., write 

- k  - I L 
'5 i t n j ~  + - -  I s~(q)+s~++~(q)=q- ~ ~s~ q ,,k+ +q,,ks~.+~)q-Z;=,+._,,j 

k I ~ L  -qX;= ,  ,,~Xk+.k + ~ q -  X;=,+_,,,j 

where the two-site annihi lat ion ope ra to r  X ~ k + l  is given by 

/i 11 X+ 0 0 q I 

*'k+l = 0 0 

0 0 0 , . ,+~ 

(2.13) 

It is easy to check that  u~.., + i X~+, + ~ = X~+, + t u, . ,  + l = 0, which then 
implies [u , . ,  + i, S +- ] = 0 .  

Note  that  H is also invar iant  under  s imul taneous  reflection of  sites 
k ~ L + 1 - k  and par t ic le-hole  exchange and/Jk  ~ /L  L +1 *- The  t ranspose  
H r of  H is related to H by the similarity t rans format ion  V, (2.11 ): one has  

HT= V 2 H V  -2 (2.14) 

The  easiest way to see this is again to use the explicit representat ion (2.6). 
As discussed in ref. 7, one can construct  f rom Eqs. (2.12) all the 

N-particle,  zero-energy eigenstates [N)  and (N[  out  of  the zero-part icle  
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states 10) and (01 (in spin language these are the states with all spins up). 
One obtains 

1 1 
IN> - [N]u ! (S-)N 10> and <NI = IN]q[ <01 (S + ),v (2.15) 

Here [ m ],~ ! = [ 1 ] ,/[ 2 ] ,r'" [ in ],i. The left eigenstates assign equal weight to 
any N-particle configuration, as one would expect from the definition of H 
as generating the time evolution of a stochastic process, and are normalized 
so that this weight is one: 

( N )  L 

( g [  = ~. (n[,  ( N ] n )  = 1 Vn with y" nk=N (2.16) 
n k = l  

(The upper index on the sum means that the summation runs only over 
states with total particle number N.) Hence, averaging over an N-particle 
state is performed by multiplying (N[ from the left. As noted above, multi- 
plying with the vector (sl = 5Z. ( n l = Z ~ =,) (N[ corresponds to averaging 
over all states. The decomposition of the vector (sl into pieces with fixed 
particle number is meaningful because of particle number conservation of 
the process. (NI H =  0 just an expression of this fact. 

The normalized N-particle states 

( N I  

IN) ...... = ~ ) - t  I N ) = ~ ) I q - U ' L - t ' Z q 2 Z ~ = ' ~ " ' " [ n  ) (2.I7) 
tl 

are the steady states of the inhomogeneous model, and are normalized by 
the factor 

\ N / , , -  [L- -~ ,~ i  iN],,! 

such that they satisfy ( N I N )  . . . . .  =1 .  Moreover, one can derive exact 
expressions for all density correlation functions in the steady state. (7~ 

Some Notation. (1) Instead of denoting a configuration by a set n of 
L occupation numbers nk = O, 1, one may represent a given N-particle con- 
figuration by the set C of occupied sites, C =  {k~ ..... k:v}, with cardinality 
I CI =N.  So instead of defining the exclusion process on the state space 
X =  {0, l} s, where S =  {1 ..... L} are the site on the lattice, one may define 
the process on the collection Y of subsets of S. Corresponding to a con- 
figuration A �9 Y, we introduce the state vector ik~ ..... kx ) .  In what follows 
we use this latter notation whenever we consider configurations with a 
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specific number of particles, whereas the symbol n is used when the number 
of particles is left unspecified. 

(2) The transposed vector to Ik, ..... k N )  is denoted by (k t  ..... kNI.  

Note that 

( k ,  ..... kNI  = (01 s~, ... S+k,,,---- ( N I  nk, ... nk,,, (2.18) 

(In order to avoid confusion, we point out that (NI is not  the transpose 
of IN) except for N = 0 ,  L. This notation, however, will not give rise to 
problems, as only 10) will be used later.) 

(3) In the quantum Hamiltonian language used in this paper expec- 
tation values of occupation numbers nk are given by matrix elements of the 
number operator defined in (2.6). Expectation values of functions Z of the 
occupation numbers translate into matrix elements of these functions of 
the number operators, e.g., Z = nk, ... nk,v for the N-point density correlation 
function. We shall denote expectation values of some quantity Z by ( Z ) F .  
Here the subscript F refers to the probability distribution over which one 
averages. For example, for the density correlation function one may either 
write ( n k , . . . n k ~ v ) r = ~ , . n k , . . . n k , , , F ( n ) ,  in which case the n k = 0 ,  1 are 
numbers, or (nk~ ... nk~,)r  = (sl nk, ... nkx IF) .  In the latter case the nk, are 
operators and IF) is defined as above by IF) = Z .  F (n ) In ) .  

(4) Time-dependent expectation values are denoted (Z ) '~ ,  where A 
refers to the initial configuration or a normalized average over initial con- 
figurations and the superscript t denotes the time elapsed since some initial 
time to. In such an expression the configuration n has an initial weight 
A(n). When A N  is used rather than just A, this indicates that we consider 
N-particle initial configurations where the initial probability of finding the 
N particles on some set of lattice sites {kl . . . . .  kN} is A u ( k ~  ..... ku) .  In the 
operator language introduced above such correlation functions are given 
by 

< Z > '  - - "  A , , -  (NI Z e  IAN> (2.19) 

where 

IAN)  = ~ A(k, ..... kN) Ik, ..... k u )  
I <~kI < . . .  <kN<~ L 

(2.20) 

with ( N I A N ) = I .  If, e.g., initially N particles are located at sites 
Z ' {kt,..., kN} with probability 1, then l a x )  = Ik~ ..... kN) and ( )~,,, is what 

is usually referred to as the conditional average. In this case we also use A N 
to denote the set of initially occupied sites. 
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(5) Two-time correlation functions ( Z l ( t  i ) Z2(t2) ) .4 are defined by 

( Z l ( t l )  Z2(t2)  ) A = ( Zl e- t t~ , , - , ,  Z2e- I I t2 ) .4  (2.21) 

The n-time correlation functions are defined correspondingly. 

(6) The indices j, k, and l always refer to (integer) space labels of the 
chain. 

3. DUALITY RELATIONS ( q ~ 0 ,  1, oo) 

In this section we establish the duality relations for the asymmetric 
exclusion process. Let us first remind the reader of the contents of these 
relations in the symmetric case and how they can be derived. 

Generally, duality between two Markov processes i1, and (, with state 
space X and Y, respectively, means 

E'lF(rh, ( ) =  ECF(q, (,) (3.1) 

for a bounded, measurable function F on X x  y.c~ Thus, it is a relation 
between expectation values which is defined with respect to F. For the 
symmetric exclusion one chooses X and Y as defined above and defines for 
n e X and C e Y the function 

10 if n k = l  V k � 9  
F(n, C ) =  else (3.2) 

For  C =  {kl ..... k,,,} one can write F(n, C) =nk, ... nk,,,. 
In order to show what duality for the symmetric exclusion process 

means, let us now assume that initially N particles are loated on a set of sites 
, . .  n i AN = {I~ ..... IN} and we want to compute the probability (nk, k,,,)..i, of 

finding (any) m particles on sites B,, = {kl ..... k,,,}, at time t. In words, the 
duality relations (3.1) with the function (3.2) states that the probability that 
n = 1 at time t on all sites B,,, with initial condition A X is equal to the prob- 
ability that (the original) configuration has n = 1 on the sites occupied by an 
m-particle system at time t which started at sites B,,,. ~2~ Translated into 
operator lafiguage, the relation reads ~5~ 

( n k l  n t �9 . .  k,,, ) ..,,,. = ~'. (nk~ ..nk;,,)~,,, (3.3) 
B~n ~ M N 

In this expression the sum runs over all sets B',,,= {k', ..... k',,,} which are 
contained in the set A N, i.e., the m-point correlation function (n~., ... nk,,,)I<,. 
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of the N-particle system is given by sums of m-particle correlation functions 
(we assume m >/N) which are the conditional probabilities 

<nkl . . .  nk;,,>'B,,, = <k'l ..... k',,,I e tl, Ik ,  ..... k , , , )  

of finding the m particles on the set of sites B'm at time t if at time t = 0 they 
had been on sites B,,,. Thus the problem of calculating an m-point correla- 
tion function of an interacting particle system of N particles has been 
reduced to the calculation of a correlation function of an m-particle system. 

The duality relations may be written and derived as follows ~ J-~' 

< l'l kl Fl t �9 " " km ~ A ,,,, 

= (NI nk, . . .  nk . ,e  ii, l A x )  

( s + ) N  . . . .  
= ( k l  ..... k,,,I e m IAN) 

( N - m ) !  

= Z 
I <~k] < . . . < k ; , , < ~ L  

= E 
1 <~k] < . . . < k ; , < ~ L  

( NI  nkl . . .  nk;,, I A N )  ( k ,  ..... k,,,I e - m  [k'l ..... k : , , )  

( NI  n~-i . . .  nk;,, I A x )  ( k'~ ..... k:,,I e t,, [kl ..... k , , , )  (3.4) 

where in the last step we used that H is a symmetric matrix. Here A,v 
denotes more generally a normalized superposition of initial configurations, 
i.e., an arbitrary initial probability distribution. For an initial configuration 
{k~ ..... k,, ,} one recovers (3.3). This derivation of these relations is elemen- 
tary and requires nothing but some basic concepts of the representation 
theory of SU(2) [which is an obvious symmetry of the Hamiltonian (2.2) 
for q = 1 ], and the insertion of a unit operator expanded in eigenstates of 
the particle projectors 

l=~ln><nl= ~. ( ~ lk~ ..... k,, , )(k~ ..... k,,,I ) (3.5) 
n m = O  I ~ k  I < . . . < k m < ~ L  

The duality relations may be understood as a consequence of the fact that 
the projector nk is a spin-l/2 operator and of the corresponding selection 
rules of SU(2): The state (N] in the chain with L sites has total angular 
momentum S = L / 2  and _- component S: = L / 2  - N .  Therefore (N] nk, ... nk,,, 
may be decomposed into states with L / 2  >i S '  >1 L / 2  - m and S'_ = L / 2  - N ,  
which are obtained from m-particle states using the lowering operator S - .  
Thus only m-particle amplitudes enter into the r.h.s, of  Eqs. (3.3), (3.4) (see 
also ref. 42). 
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In the Uq[SU(2)] -symmetr ic  case of driven diffusion nk is not a 
spin-I/2 operator. Instead one has to consider another complete set of 
observables built by products of the operators 

Qk = q -2,v~ (3.6) 

or their discrete lattice derivatives 

Qk =(Qk--  Qk-t)/(q 2_ 1)=q-2U~-tn~. (3.7) 

where Nk = k ~i= ~ n# Using the relations given in the preceding section, one 
can verify that they satisfy the commutation relations 

[(s+)N 1 , (S+) N-'  
[N],,--""~.' Qk =q-X+, (q  - - 1 ) Q k S ~  +. ~ ] - - ~ , t !  (3.8) 

where Sk + =Z~= )s~(q). Then, with (2.15) and (3.8), one finds 

[(s+)N 1 (s+)N-' 
( N l O k = ( 0 l l _ ~ , 0 k  =q  u + ' ( k l [ N _ _ l ] q !  (3.9) 

and, by repeated application of (3.9), 

( S + )  N . . . .  

(NI Qk, ... Qk,,,=q .... ' N - " (  k, ..... k,,,I [ N - - m ] , , !  (3.10) 

Here we have assumed that the k~eB,,, are pairwise different. (As before, 
B m = { k ,  ..... k,,}.) 

Now we are in a position to derive the duality relations. Multiplying 
(3.10) by exp( -Ht )  [AN),  using the Uu[SU(2)]  symmetry (2.12) of the time 
evolution operator, and inserting a unit operator (3.5) gives the relations 

<0k,  ... 0k.,> ;,, = <Xl 0k, ... 0,, , ,e " IAN> 
i i i  

=Y'.(kt  ..... k , , , l e - H ' l n ) ( n l q  .... ,N - , ,  (S+)  N-  IAA,) 
. [ N - - m ] , 1 !  

= Z (N I  O_kl ... Ox.;,, IAN) 
I <~k~ <...<k~,,<~ L 

x (k~ ..... k,,,] e -  H, [k', ..... k;,,) 

= E q2ZT="k'-k;)(N[ Oki """ Ok;, [AN) 
I <~k]<., .<k~n<~L 

x (k', ..... k;,,[ e -H' [k, ..... k,,,) (3.11) 
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In the last step we used the similarity transformation (2.14), giving the 
factor 

q_Z,=~ca-, <) 

inside the sum. Relations (3.11) are the main result of this paper. In terms 
of the general definition (3.1) of duality both q, and (, are the same 
asymmetric exclusion process defined on X and Y, respectively, and the 
function F, (3.2), is given by 

Ifiq -2.%_, 2k, if n k = l  
F(n, B,,,)= t 

~O otherwise 

Vk ~ B,,, 
(3.12) 

where m =  IB,,,I is the cardinality of B,,, and Nk,_ ~ is the number of 
particles up to side k ; -  1 in the configuration n. For B,,, = {k~ ..... k,,,} one 
may write 

F(n, B,,,)= f l  q 2 N k , - I -  2/':,/,/k ` 

i = l  

Note that we have assumed that all ki E B,,, are pairwise different. Rela- 
tions involving correlators of Qk where some of the k i are identical, i.e., 
involving integer powers Q~ of ~)k, can be obtained in the same way. 
Averages of Q~ are important for the calculation of the density dynamics. 
Also, in the polymer picture and the random-rod model for interface fluc- 
tuations where Q~. plays the role of a partition function, one is interested 
in the quenched free energy (In Qk), which requires the calculation of 
averages values of powers of Q~..q ~7.38~ In the limit q ~ 1 one recovers (3.4). 

Using the commutation relations (3.8), one may also derive relations 
for correlation functions involving different imes. The simplest example is 

L 

( Odt, ) z(t,)>,,~,= y' 
/ , - '  = I 

<kl e - m  Ik'>(~)k.(t_,) Z(t2)) .,, (3.13) 

with r = t ~ - t  2>~0 and albitrary Z. The equal-time correlator 
( Q~..( t 2) Z(t ,)  ) ..t ,. on the r.h.s, of ( 3.13 ) may be simplified using relations 
(3.11). 

It is interesting to note that the operator Qk=qkQ~. is the lattice 
analogue of the Hopf-Cole transformation on the KPZ equation ~2~ 

a 2 (a  )2 
ata h(x' t)=~x2h(x' t)+v ~h (x , t )  +q(x,t) (3.14) 
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for the continuum height variable h(x, t) for surface growth in 1 + I dimen- 
sions. In (3.14) r/(x, t) is the usual Gaussian white noise. [In what follows, 
we distinguish functions f ( x )  of the real number x in the continuum from 
lattice functions fk, where k is an integer number, by writing x as an argu- 
ment of the function rather than as a subscript.] The (inverse) Hopf-Cole 
transformation 1361 h(x, t ) ~  Q(x, t ) =  exp[vh(x, t)] relates (3.14) to a linear 
diffusion equation 

0 (~2 
8t Q(x, t ) =  O-~v, Q(x, t ) +  r/(x, t )Q(x,  t) (3.15) 

The correspondence to the lattice problem discussed above can be under- 
stood as follows. Consider a surface over a one-dimensional discrete space 
where height differences between neighboring lattice sites may differ only 
by units of + 1 (Fig. 1 ). In the mapping to the particle model a configura- 
tion of particles on the chain represents the shape of the surface at some 
time t by saying that a particle at site k ( k = 0 ,  1, 2 ..... L) represents a 
height difference hk -- hk ~ = -- 1 between sites k and k -  1, while a vacancy 
represents a local height difference + 1. The stochastic dynamics of the 
model is given by the Hamiltonian (2.2). Hopping of a particle to the right 
corresponds to growth of the surface height at a local minimum, while hop- 
ping to the left corresponds to shrinking of the height at a local maximum 
(see Fig. 1 ). The average height (hk(t)) of the surface at site k is therefore 
given by the expectation value 2(S~,) with 2S~. = k - 2 N k .  If the system is 

h'=O 

h = 5  . . . .  

0 0 r 0 r r 0 

k 

Fig. 1. The mapping between the restricted interface and the particle exclusion process: we 
show a possible interface configuration and the corresponding particle occupancies on a lattice 
with sites labeled by k. The indicated flips in the interlace corresponds to particles hopping 
on the lattice, marked by horizontal arrows. 
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homogeneous, i.e., p j =  I/2 Vj, the average height satisfies the differential- 
difference equation 

8 q + q  
8t <Irk(t)> 2 - - [ < h k + , ( t ) > + < h k  f i t )>--2<hk(t)> ] 

- I  

+ q--~q {1--<[hk+,(t)--hk(t)][hk(t)--h k , ( t)]>} (3.16) 
2 

which is a discretized, averaged KPZ  equation. On the other hand, the 
expectation value of the lattice operator 

Qk = qk Qk = qS~ = exp(fhk) 

satisfies 

0 
8t (Qk(t)> = (Qk+ , ( t )>  + <Qk_,( t )> - - ( q + q - ' ) ( Q k ( t ) >  (3.17) 

This is indeed a discretized form of (3.15 ) with ( qQ > = (q + q J - 2)(  Q >. 
Therefore the transformation 2S~.~q "-~ (or - - 2 N k ~  Qk) may indeed be 
considered an (inverse) lattice Hopf-Cole transformation. 

Note that the one-point functions <Qk> and <Qk> on the lattice are 
given in terms of one-particle excitations. As pointed out in ref. 7, in the 
infinite-volume limit the one-particle sector is characterized by a dynamical 
exponent z = 2. We conclude that the bulk dynamics of these exponentials 
has z = 2, as opposed to the dynamics of the density variables themselves, 
which has z =  3/2J 424~ We have emphasized here that this distinction is 
valid tbr bulk quantities. In the next section we shall see that the situation 
near the boundary of the system needs special attention. Note that the 
dynamical exponent z = 2  for quantities related to Q(x) may also be 
derived for the continuum theoryJ 37~ 

4. THE TOTALLY A S Y M M E T R I C  CASE 

Here we study the totally asymmetric model where particles hop in 
only one direction. We choose q- -0 ,  corresponding to hopping to the 
right, i.e., particles may move with some rate Pk from site k to site k + 1, 
but not backward. Renormalizing the time scale by a factor q-4-q- J, we 
find that the Hamiltonian (2.2) becomes 

L - - I  

H = -  ~ p~.(S~+Sk+l--nk(1--nk+l)) (4.1) 
k = l  
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and commutes with the operators T -+, T ~ and ~o defined by 

k = l  

T - =  L 
k = l  

L 

T ~  I-I 
k - -  

L 

?o=  I-I 
k - -  

(;O ( 1 - n i) sa. 
I 

( ' 1 / = k + |  

1 - -  n k )  
I 

17 k 
I 

(4.2) 

They satisfy the relations 

[ T +, T -  ] = T " -  T" 

[ T", T"] = 0 

T + T '~= T"T + = 0  

T O T  = T -  T ~ = 0 

(4.3) 

Note that H given by (4.2) also commutes with S--, (2.8), expressing 
particle number conservation. 

The (normalized) N-particle steady states IN) of H, (4.1), are given by 

IN) = ( T - )  :v 10) = IL+  1 - N ,  L + 2 - N  ..... L )  (4.4) 

These are simply the states with N particles occupying the N rightmost 
sites of the chain. On the other hand, averaging is done as for finite asym- 
metry q by multiplying with the left N-particle, zero-energy eigenstate 

(NI =<01 ( T + )  'v= Y'. (k, .... k,,I (4.5) 
I <<.kl < . . . <k~  <.L 

The duality relations for q - - 0  can be obtained by taking the limit in 
(3.11 ). For i~ractical purposes, however, this is tedious. Instead we rederive 
the relation for the one-point function using the algebra (4.2). We study 
expectation values of the operators 

L 

Yk= ]-[ ( 1 - n  i) (4.6) 
i = k  
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giving the probability of finding the last L -  k + 1 sites in the chain unoc- 
cupied. Furthermore, we define 

L 

~'k=Yk+,--Yk=nk [I (1--nj)  ( l ~ < k ~ < L - 1 )  (4.7) 
j = k +  I 

A short calculation shows that 

(T+)Nyk= ykT~+ dT+) N-I (4.8) 

where T~ = Z~=~ [ M ti2 ~ ( 1 - hi) s~ + ] and therefore 

(N[ ~'k = (kl (T+)  N- '  (4.9) 

This leads to the relation 

L 

( ~'k)A,. = ~. (kt  e -n '  Ik'><k'l (Z+) u- '  IAN> 
k ' = l  

L 

<kl e -n '  Ik'><NI ~k. [AN) (4.10) 
k ' = l  

This relation expresses the fact that the probability of finding a particle 
followed by holes only is independent of the motion of all the other 
particles to the left of the rightmost particle. This result may be derived 
directly from the master equation (or other reasonable definitions of the 
process), but we find it interesting that this statement follows from the 
quantum algebra symmetry of the process and that it is the analogue of 
the less obvious duality relations for finite asymmetry and of the usual 
duality relations for the symmetric case. Note that for N:/: 0 one has 

k I 

j =  l 

(4.11) 

since ( Yt )A,, = 0 except in the trivial zero-particle sector. 
Using the symmetry under parity and particle-hole exchange, one 

finds similar relations for 

k 

Bk = ]-I nj- (4.12) 
j = l  
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and 

k - - I  

B k = B k - I - - B k = ( 1 - - n k )  I-[ n.i (2~<k~<L) (4.13) 
j = l  

The corresponding relations read 

L 

, , , ,  = 

k ' = l  

( L +  1 - k l  e - m [ L +  1 - k ' ) ( N I  Bk' IAN) (4.14) 

Note that except in the trivial case of a completely filled system ( N =  L) 
one has 

L 

(Bk)..t.,,= ~ (Bj):,,,, (4.15) 
j ~ k + l  

Other relations of this kind may be obtained for the operators I:k,....k,,,, 
which are strings of projectors on holes and particles ranging fromsite k t 
to site L, e.g., 

~'k,.k,_ = nk,( 1 -- nk, + t).-. ( 1 -- nk_,_ i) nk2(1 -- nk2 + I)... (1 -- nL) 

One can show that expectation values for these operators are given in 
terms of m-point correlation functions. This simply expresses the fact that 
the motion of the m rightmost particles is independent of the motion of the 
remaining N - m  particles to their left. 

As an application we compute the probability pl(k, t )=  (Bk),,J.,.m of 
finding the first k - 1  sites of a chain occupied, followed by a vacancy. As 
initial state we take an arbitrary N-particle state where the first l -  1 sites 
are occupied, followed by a vacancy on site/. For any such state one has 
pt(k, t = 0 ) =  (N[ B~. JAN(I)) =fik.t and therefore 

p~(k, t ) = ( L + l - k l  e -n '  [ L + I - - I )  (4.16) 

The matrix element on the r.h.s, of (4.16) cannot be calculated by inserting 
a complete set of eigenstates of H, since H is not diagonizable in the totally 
asymmetric" limit. However, it is easy to compute the action of H on the 
one-particle state IL + 1 - 1) directly. One finds (2 ~< k ~< L) 

( L + I - - k l H " I L + I - - I ) = (  (-1)~- ' (0,  l-kn ) ,  l<kl>~k (4.17) 

822,86,5-6-25 
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Expanding the exponential  in (4.16) in powers of  t yields 

I r 

pt(k,  t)=O,.-~, e - '  (4.18) 

where we have defined r =  l - k  >t 0 and the Heaviside step function Or = 1 
for r >~ 0 and O,. = 0 for r <  0. This result depends on the length L of  the 
system and the number  o particles N < L only insofar as we assume that  
2 <<. k <~ L and 2 <~ l <~ N + 1. 

The quant i ty  ( j ( 1 ,  t))A~CI~=--p1(2, t) is the time derivative of  the 
density p(1, t ) =  (n~),~,,.tz~ and therefore the current  at the left b o u n d a r y  o f  
the system. Its absolute value has a max imum (as a function o f  t) for 
t = r = 1 - 2 .  In order  to study the scaling behavior  of  the current  we set 
l -  2 = t - R nd take the limit t, ! ~ 0% keeping the ratio u = R'-/t fixed. In 
this scaling limit we find 

- -  e -  R - / t  
( j ( 1 ,  t ) )A,v , , ,~ ~ t t  (4.19) 

corresponding to a dynamical  exponent  z = 2 and not z = 3/2 as for bulk 
density correlat ionsJ 49"24~ 

This result may  be interpreted in terms of  height variables as follows: 
We define as in Section 3 a one-dimensional  lattice with site labels k 
running from 0 to L and with height variables hk and height gradients 
hk -- hk_ t = 1 -- 2nk = _ 1. We set h0 = 0 and take an initial height profile 
which first runs l - 1  steps downward  and followed by a step upward  at 
site 1. We do not  specify the initial height configurat ion for sites I ' >  l 
(Fig. 2). So we have at time t = 0 

I 
- k ,  O<~k<~l -1  

h k = - j +  2, k = 1 

I arbi t rary k >/1 + 1 

(4.20) 

where "arbi t rary"  is to be unders tood within the constraint  on the gradient.  
The bounda ry  condit ions for the particle model  are such that  no particles 
can enter or  leave the system, corresponding to keeping h0 = 0 fixed for all 
times. Thus  ( h k ( t ) )  = k - 2 Z~= t ( q / )  and in part icular  

8 
0t (h(  1, t)).4.,.al = - 2 ( j (  1, t ) )  Axal (4.21) 
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N N I I I I I 
~ 1  I I I I 

N x I I I I 
~ 1  I I I 

NI x I I I I 
~ 1  I I I 

" q  I I I 
i i 

h - 5  ........................................................... . ~ 1  .................. 1 .... 

Fig. 2. Initial interface and corresponding particle configuration at the left boundary at time 
t = 0 with / = 6 as discussed in the text. The interface has a negative slope hk - hk- ~ = -- 1 up 
to site 6, followed by a positive bump at site 7. 

Thus  ( j ( l , t ) ) A , l ~  may be interpreted as a special boundary  height 
correlat ion function with dynamical  exponent  z = 2. 

5. OTHER A S Y M M E T R I C  EXCLUSION PROCESSES 

The main ingredient in our  derivation in Section 3 was the fact the 
time evolution operator ,  or, rather the matrices uj, (2.3), commute  with the 
generators  S • (2.8), of  the qua n t um  algebra. Therefore, the duality rela- 
tions (3.11) hold for an), stochastic process which can be defined in terms 
of  linear combinat ions  of  the Uk.k+l and their products.  In order  to 
illustrate this, we define two other  asymmetric  exclusion processes for 
which the duality relations hold. 

5.1. Asymmetr ic  Exclusion Process w i th  Next -Nearest  
Neighbor  Interact ion 

We consider a stochastic process in one dimension where particles 
may hop  one or  two sites according to the following rules. To each initial 
configurat ion of  any three neighboring sites ( k , k +  I, k + 2 )  (where 
1 <<,k<~L-2) we give the configurat ions into which the system evolves 
after an infinitesimal time step. The coefficients given with the final states 
are the relative probabilities of  these events: 
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(100) --, q3(010) + q(001 ) 

(010) --, q(100) + q3(001 ) 

(001) --+ q-~(100) + q(010) 

(110) ---, q(101) + q3(011) 

(101) --* q(110) + q3(011) 

(Oll)---,q-3(llO)+(q+q -t-q-3)(lO1) 

(5.1) 

The first line means that a particle followed by two vacancies hops with 
rate q3 one lattice unit to the right and with rate q by two lattice units. In 
order to ensure positivity of all rates we assume q+q-t _q-3>/0. The 
configurations (000) and (111) do not change. The Hamilton operator 
defining the stochastic time evolution is given by 

L - 2  

t-I ~ E Uk, k + l,k + 2 
k = [  

where 

(5.2) 

l ) k , k + l . k + 2 = ( l  q - q 2 ) ( U k + l . k + 2 )  

- - q U k . k + l l l k + l . k + 2 - - q - - l U k + l , k + 2 U k . k + l  (5.3) 

Obviously /~ commutes with the generators (2.8) of the quantum algebra 
Uq[ SU( 2 ) ]. 

By choosing other linear combinations 

O~Uk.k + I + flU~. + I.k + ~- + )'UX..~. + I U~. + t .k + 2 + (~tt~. + l .k + 2 t tk ,k  + I 

one can define other processes involving next-nearest-neighbor interactions. 
Note that since the u,.~. + t are generators of a Temperley-Lieb algebra with 
relations { 3~ 

uL~.+t (q+q-I) b / k , k  + i ~ U k _ k + l U k + l . k + l •  ~ U k . k + l  

there are no other independent products of u,.,+~ and u,+ t.k+_,. 

5.2. Asymmetric Exclusion Process with Parallel Updating 

So far we have considered stochastic processes defined in continuous 
time. One may also define the asymmetric exclusion process in discrete time 
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by choosing a parallel updating scheme as follows: We divide each (dis- 
crete) time step into two half time steps. In the first half time step the chain 
of L sites is divided into pairs (1, 2), (3, 4), etc., of sites. If both sites in a 
pair are occupied or empty, they remain so. If the left site 2 k -  1 in a pair 
is occupied and site 2k empty, then the particle hops with probability p , q  
and remains on site 2 k -  I with probability 1 --Pkq. On the other hand, if 
the left site 2k in the pair is occupied and site 2 k - 1  empty, the particle 
hops with probability p , q  -~. These rules are applied in parallel to all pairs. 
In the second half time step the pairing of the lattice is shifted by one unit 
such that the pairs are the sites (2, 3), (4, 5), etc., and the same rules are 
applied again. Here the quantities p~q and p , q -~  are probabilities and 
therefore have to satisfy 0 <~l.tkq, pkq-~<~ 1. 

The discrete time evolution of this system may be expressed in terms 
of a transfer matrix 

L/2  L / 2 -  I 

T =  T~ . . . .  = 1-'I T_k_, I-[ T2, (5.4) 
k = l  a - = l  

with the nearest-neighbor hopping matrices 

7", = 1 -P,ua- k+ w (5.5) 

where u,.,+~ is the same matrix as in (2.3). This is the transfer matrix of 
an inhomogeneous asymmetric six-vertex modelJ ~~ Again, obviously T 
commutes with the generators S -+'--, (2.8), of the quantum algebra 
U,j[SU(2)] and the duality relations (3.11) and (3.13) are valid with 
exp( -Ht )  replaced by T'. 

6. C O N C L U S I O N S  

Using the Uq[SU(2)] symmetry of the asymmetric exclusion process 
with reflective boundary conditions, we derived relations (3.11) expressing 
m-point correlation functions of the operators Q,, (3.7), in the N-particle 
sector in terms of simpler correlation functions for a system of only m 
particles. These relations are the generalization of the duality relations for 
the symmetric exclusion process. This symmetry may also be used for the 
derivation of relations involving correlation functions for different times, an 
example of which is given in (3.13). In the mapping to the growth model 
discussed in Section 3 the closely related operator Qk is the lattice analogue 
of the Hopf-Cole transformation on the KPZ equation and the dynamics 
of this operator is, as in the continuum case, characterized by a dynamical 
exponent z = 2. 
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In the totally asymmetric case we have derived explicit expression 
for the boundary density correlation functions (n~n2.. .nk) and 
((1--nk)(1--n~.+~)...(1--nL)). We have found a dynamical exponent 
z=  2 in the expression (4.19) for the boundary current. On the other hand, 
one expects for density correlations in the bulk z = 3/2. This observation 
raises two questions: the first is whether the dynamical exponent for 
boundary correlations is z = 2 in general, and second, whether one would 
find this exponent also in the continuum growth model with fixed bound- 
ary height. 

Finally, we have pointed out that the duality relations (3.11) and 
(3.13 ) hold for any U,~[ S U(2) I-symmetric, single-species exclusion process. 
The essential point, however, is not that we have considered only exclusion 
processes involving one type of particle, but the Uu[SU(2) ] symmetry of 
the time evolution. Therefore, other duality relations may be derived for 
Uq[ SU(2)]-symmetric exclusion processes involving more than one species 
of particles. Possible candidates for two-species processes may be among 
the spin-1 Hamiltonians studied in refs. 8, 44, and 45. 

A C K N O W L E D G M E N T S  

The author would like to thank M. Kardar, J. Krug, S. Sandow, and 
H. Spohn for useful discussions and comments and the Isaac Newton 
Institute for kind hospitality and providing a stimulating environment. This 
work was supported by the SERC. 

REFERENCES 

1. T. Liggett, hsteracthlg Particle Systems (Springer-Verlag, New York. 1985). 
2. F. Spitzer, A~h'. Math. 5:246 (1970). 
3. S. Alexander and T. Holstein, Plow. Rev. B 18:301 (1978J. 
4. L.-H. Gwa and H. Spohn, Phys. Rev. A 46:844 [1992). 
5. F'. C. Alcaraz and V. Rittenberg, Phys. Lett. B 314:377 (1993). 
6. F. C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg, Am1. Phys. (N.Y.) 230:250 (1994). 
7. S. Sandow and G. Schfitz, Eur~qdO,s. Left. 26:7 (1994). 
8. S. R. Dahmen, J. Phys. A 28:905 11995). 
9. D. Kim, Phys, Rer. E 52:3512 (1995). 

10. D. Kandel, E. Domany, and B. Nienhuis, J. Phys. A 23:L755 (1990), 
If. G. SchiJtz, J. Stat. Phjw. 71:471 (19931. 
12. G. Schiitz, Phys. Rev. E 47:4265 (1993). 
13. H. Hinriehsen, J. Phys. A 29:3659 (1996). 
14. A. Honecker and 1. Peschel, Preprint (1996). 
15. G. Schfitz and S. Sandow, Phys. Rev. E 49:2726 (1994). 
16. S. Albeverio and S.-M. Fei. Preprint 11996). 
17. J. Krug mid H. Spohn, in Solids far .[?om Equilibrimn, C. Godreche, ed. [Cambridge 

University Press, Cambridge, 1991 ), and rel;erences therein. 



Duality Relations for Asymmetric Exclusion Processes 1287 

18. P. Meakin, P. Ramanlal, L. Sander, and R. Ball, Phys. Rev. A 34:5091 (1986). 
19. M. Plischke, Z. Racz, and D. Liu, Phys. Rer. B 35:3485 (1987). 
20. M. Kardar, G. Parisi, and Y. C. Zbang, Phys. Rel,. Lett. 56:889 (1986). 
21. J. Krug, Ph.vs. Re~. Lett. 67:1882 (1991). 
22. S. A. Janowsky and J. L. Lebowitz, Phys. Rev. A 45:618 (1992). 
23. G. Schiitz and E. Domany, J. Star. Phys. 72:277 (1993). 
24. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, J. Phys. A 26:193 (1993). 
25. B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, Europhys. Lett. 22:651 (1993). 
26. M. Kardar and Y. C. Zhang, Phys. Rez~. Lett. 58:2087 (1987). 
27. D. S. Fisber and D. A. Huse, Phys. Ret,. B 43:10728 {1991 ). 
28. L.-H. Tang and 1. F. Lyuksyutov, Phys. Rev. Lett. 71:2745 (1993). 
29. J. Krug and L.-H. Tang, Phys. Rev. E 50:104(1994). 
30. A. Schadschneider and M. Schreckenberg, J. Phys. A 26:L679 [1993). 
31. K. Nagel and M. Schreckenberg, J. Phys. [Paris) 1 2:2221 [1993). 
32. K. Nagel, Phys. Ret,. E 53:4655 (1996). 
33. A. N. Kirrilov and N. Yu. Reshetikhin, LOMI preprint 11988). 
34. V. Pasquier and H. Saleur, NucL Phys. B 330:523 (1990). 
35. J. Fuchs, Af/hw Li~,-Algehras cmd Qtumtum Groups (Cambridge University Press, 

Cambridge, 1992). 
36. E. Hopl; Commun. Pure Appl. Math. 3:201 (1950); J. D. Cole, Q. Appl. Math. 9:225 (1951). 
37. U. Schultz, J. Villain, E. Br6zin, and H. Orland, J. Star. Phys. 51:1 (1988). 
38. G. Forgacs, R. Lipowsky, and Th. M. Nieuwenhuizen, in Phase Transitions aml Critical 

Phetmmena, Vol. 14, C. Domb and J. k Lebowitz, eds. [Academic Press, London, 1991 ), 
and references therein. 

39. M. Doi, J. Phys. A 9:1465, 1479 [ 1976). 
40. P. Grassberger and M. Scheunert, Fortsehr. Phys. 28:547 (1980). 
41. S. Sandow and S. Trimper, Europhys. Lett. 21:799 (1993). 
42. R. B. Stinchcombe, M. D. Grynberg, and M. Barma, Phys. Ret,. E 47:1018 (1993). 
43. H. N. V. Temperley and E. H. Lieb, Proc. R. Soe. A 322:25 ( 1971 ). 
44. M. T. Batchelor, L. Mezincescu, R. I. Nepomechie, and V. Rittenberg, J. Phys. A 23:LI41 

( 19901. 
45. H. J. Vega and E. Lopes, Nucl. Phys. B 362:261 ( 1991 ). 


